

A Green Economy for Europe: Costs, Benefits, Opportunities and Policies

A Presentation to the Eionet Webinar on resource efficiency policies 'Green Economy: Opportunities for Jobs, Growth and Innovation in Europe'

Paul Ekins

Professor of Resources and Environmental Policy Director, UCL Institute for Sustainable Resources University College London

London

June 11th 2015

The world needs a green economy

- To obtain the benefits of climate stability, resource security, environmental quality
- Green economy requires greening of the whole economy, not focusing only on core 'green' sectors
- Economic growth resulting from this process –
 'green growth' will be sustainable, unlike 'brown growth', which will be increasingly undermined by climate and resource disruptions and instabilities

Benefits of a Green Economy

The costs of a fossil fuel economy

Source: IMF 2015, Figure 6: Global Post-Tax Subsidies by Product and Subsidy Component, 2013, p.22

Source: Authors' calculations, based on sources in Appendix Table 2.

Note: Other local factors apply only to petroleum products and refer to non-internalized externalities from congestion, accidents, and road fuels.

Foundations and pillars of a green economy

Source: Ekins et al. 2014, Figure 2, p.11

Negative cost opportunities for resource efficiency

- Globally USD 2.9 trillion in 2030 (70% at 10% internal rate of return) (McKinsey 2011)
- EU net benefits of €603 billion (AMEC and BIO IS for European Commission 2013)
- UK economy £23 billion (Oakdene Hollins 2011)

National Industrial Symbiosis Programme (NISP) NISP outputs (investment £28m over 5 years)

5-year figures = 60% attribution and 20% annual persistence decay

	Actual	5 years	Public investment/ unit output
Landfill diverted (mt)	7.0	12.6	0.31 (£/t)
CO ₂ reduction (mt)	6.0	10.8	0.36 (£/t)
Virgin materials saved (mt)	9.7	17.5	0.23 (£/t)
Hazardous materials reduced (mt)	0.36	0.7	6.04 (£/t)
Water saved (mt)	9.6	17.2	0.23 (£/t)
Extra sales (£m)	176	317	0.012 (£/£)
Costs saved (£m)	156	281	0.014 (£/£)
PLUS			
Extra Government revenue (£m)		89	0.31 (£/£)
			Fiscal multiplier: 3.2 (£/£)
Private investment (£m)	131		
Jobs created	3683		
Jobs saved	5087		

The EU needs a green economy

- Europe is the continent most dependent on raw material imports, in competition with 9 billion people (by 2050), 3 billion new middle class consumers (by 2030), the 'nexus' of inter-related concerns around food, water, energy, climate (and biodiversity), plus 'critical' raw materials
- In this context resource efficiency is an imperative
- Resource Efficiency: RMC Study
 Study on Modelling of the Economic and Environmental Impacts of Changes in RMC (DG Environment, European Commission, 2013)
- "To assess the economic, social and environmental impacts of alternative policy packages to improve European resource productivity (RP), as measured by Raw Material Consumption (RMC) per unit of GDP"
- Model used: Cambridge Econometrics' E3ME

Macroeconomic Impacts

Overall resource productivity improvement between 2014 and 2030

Scenario	Description	Approximate Improvement (2014- 30)
S1	Baseline	14 %
S2	Modest and flexible improvement	15%
S3	Enhanced and flexible improvement	30%
\$3.5	Further enhanced and flexible improvement	40%
S4	Ambitious and flexible improvement	50%

Findings of European Commission study

Source: Study on Modelling of the Economic and Environmental Impacts of Changes in RMC (DG Environment, European Commission, 2013)

- Absolute decoupling of material consumption is possible
- Cutting down resource consumption helps boost EU28 GDP by
 - promoting resource and energy efficiency R&D investment
 - reducing EU dependency on raw material imports
 - boosting household income by using tax revenues to reduce other tax rates
- Two million additional jobs in the EU could be created in S3
 - from higher investment and reduction in labour costs
- Beyond RP improvement of 2%pa (S3) improvement options are becoming more expensive

Estimating the macro-economic cost of increasing resource productivity

- Models are essential to integrate cost data in a representation of
 - The economy: macro-econometric/general equilibrium models
 - Good models are 'garbage in garbage out'; need to get the inputs right
- Model results depend on three crucial factors:
 - The robustness of the model structure. The model should be theoretically sound, well represented in the scientific literature, and based on robust data.
 - The plausibility of the input assumptions. The input assumptions should be plausible.
 - The quality of the data. The data should be recent, and come from expert, independent sources, generated in the main by official agencies or engineering consultancies on official contracts.

Macroeconomic modelling issues

- Major issues with macroeconomic modelling
 - Lack of representation of environmental damage, so that baselines lack credibility and climate change mitigation nearly always shows up as costs (unless it is possible to correct other economic distortions [e.g. through reducing labour taxation])
 - Inadequate representation of innovation processes
 - Standard CGE representation of full employment (not so in macro-econometric models, e.g. MDM-E3, GINFORS)

Scatter plot of model cost projections, 2000-2050

Source: Barker et al. 2006 (cited in Stern 2007, p.270).

Projections from the 2011 UNEP Green Economy Report

Figure 13: Trends in annual GDP growth rate, historical data (WDI, 2009) and projections in BAU, BAU2 and G2 scenarios

Source: UNEP 2011, Figure 13, p.519

Projections from the 2011 UNEP Green Economy Report

Source: OECD 2014 Greener Skills and Jobs, OECD Green Growth Studies, OECD, Paris

RESULTS OF GREEN 1 AND 2 SCENARIOS AGAINST BUSINESS-AS-USUAL

Conclusions on moving towards a green economy in the EU

- Negative cost opportunities for resource efficiency
- Innovation and investment: new technology, economic activity, exports
- Increased resource security (reduced vulnerability): food, water, energy, rare materials
- Increased welfare from environmental improvement: reduced GHG emissions and air pollution, waste to landfill, extraction of virgin materials
- International credibility, and exports, as the global community gradually goes in the same direction
- None of these benefits can be achieved without government intervention to provide massively increased information through a new knowledge infrastructure, and incentives and regulation to guide innovation in the direction of greater resource productivity

References for Figures

- Barker, T., Qureshi, M. & Köhler, J. 2006 'The costs of greenhouse gas mitigation with induced technological change: A meta-analysis of estimates in the literature', mimeo, Cambridge Centre for Climate Change Mitigation Research (4CMR), University of Cambridge, Cambridge
- Coady, D., Parry, I., Sears, L. and Shang, B. 2015 'How Large Are Global Energy Subsidies?' IMF Working Paper WP15/105, International Monetary Fund, Washington DC
- Ekins, P., McDowall, W. and Zenghelis, D. 2014 'Greening the Recovery', the Report of the UCL Green Economy Policy Commission, University College London, UCL, http://www.ucl.ac.uk/public-policy/Policy Commissions/GEPC
- NCE (New Climate Economy) 2014 Better Growth, Better Climate: the New Climate Economy Report – The Synthesis Report, New Climate Economy, http://static.newclimateeconomy.report/wp-content/uploads/2014/08/NCE-SYNTHESIS-REPORT-web-share.pdf
- Stern, N. 2007 *The Economics of Climate Change: the Stern Review*, Cambridge University Press, Cambridge
- UNEP (United Nations Environment Programme) 2011 Green Economy Report, UNEP, Nairobi, http://www.unep.org/greeneconomy/GreenEconomyReport/tabid/29846/Default.aspx

Thank you

p.ekins@ucl.ac.uk www.bartlett.ucl.ac.uk/sustainable