F5.1 Mediterranean maquis and arborescent matorral

Summary

This habitat includes evergreen sclerophyllous or lauriphyllous maquis vegetation with a more or less closed canopy structure, but also the low, sparse, garrigue-like siliceous scrub of the western Mediterranean and low matorral with a tree cover and usually tall and thick evergreen understorey occurring through the Mediterranean zone. Such vegetation occurs on a wide variety of substrates, with diverse associated floras, and may represent pre-forest communities, replacement stages of the climax forests, or permanent communities on xeric sites. Natural succession, intensive grazing, forest clearance and fires are major threats. Controlling such processes and interventions aid conservation.

Synthesis

The habitat qualifies for the Least Concern (LC) category because it has an extensive distribution across the Mediterranean biogeographical zones, the reduction in quantity over the past 50 years has been very small (in fact in most areas the habitat area has been stable), and the decline in quality over the same period was slight to moderate affecting only a small part (9%) of the extent.

Overall Category & Criteria									
EU	28	EU 28+							
Red List Category	Red List Criteria	Red List Category	Red List Criteria						
Least Concern	-	Least Concern	-						

Sub-habitat types that may require further examination

Several geographically differentiated sub-types may be distinguished. Such subtypes should be monitored in relation to the neighbouring vegetation communities in the succession line, because this habitat includes maquis and arborescent matorral that may represent pre-forest communities, replacement stages of the "climax" forests, or permanent communities on xeric sites.

Habitat Type

Code and name

F5.1 Mediterranean maquis and arborescent matorral

Dense evergreen tall maquis vegetation dominated by *Quercus coccifera, Pistacia lentiscus* and *Phillyrea latifolia* in the island of Corfu, Ionian islands (Photo: Panayotis Dimopoulos).

A typical display of maquis dense vegetation (impenetrable scrublands) with *Pistacia lentiscus, Olea europaea, Quercus cocifera* and *Calicotome villosa* in Nafpaktos, south central Greece (Photo: F. Xystrakis).

Habitat description

This habitat includes the evergreen sclerophyllous or lauriphyllous shrub vegetation with a more or less closed canopy structure (maquis), the low, sparse, garrigue-like silicicolous maquis of western Mediterranean, as well as the communities of low arborescent cover and with a usually thick, high evergreen shrub stratum, occurring in the Mediterranean biogeographical zone. Maguis and arborescent matorral may represent pre-forest communities, replacement stages of the climax forests, or permanent communities on xeric sites. High maquis includes scrub of Arbutus spp., Erica spp., Juniperus spp., Phillyrea spp. and low maguis includes communities of *Cistus* spp., *Erica* spp., *Genista* spp., *Lavandula* spp. Primary matorral occurs on ecologically marginal sites, but more often this habitat is derived from degraded broadleaved evergreen, thermophillous deciduous or conifer forests. Juniperus spp., Ziziphus spp., Laurus nobilis and Quercus coccifera may codominate. The habitat includes a broad variety of plant communities and so, it does not exhibit any specific ecological preference. It mostly occurs in the thermo- to meso-Mediterranean belts but it extends from the intermediate between tropical and Mediterranean zones (scrub steppes of the arid Iberian, North Africa, Anatolia and central Cyprus) to the supra-Mediterranean zone (Cistus ladanifer shrublands of the Iberian peninsula and southern France). The habitat does not show any relationship with one specific substrate and it is found on acid (e.g. Ericion arboreae; Arbuto unedonis-Laurion nobilis), decalcified (e.g. Cistus laurifolius maquis) and alkaline soils. Grazing and fire are two of the most influential factors shaping the habitat's physiognomy, acting at varying and usually contradictive ways. Cistus monspeliensis maguis can be favoured from fire events and may dominate the landscape after fires. On the other hand, fire in *Juniperus* ssp. arborescent matorrals can be a big threat to the habitat due to the low resistance to and poor recovery from fire of *Juniperus* species. With increasing summer aridity and human pressure, maguis resembles to garrigues as they become low and sparse. Moreover low, garrigues-like maquis are rather frequent in fire-prone regions. This habitat, besides the primary, edaphicor climatic-controlled stands at marginal sites, has a strong plagioclimax character and so, its occurrence and quality mainly depends on the occurrence of low to intermediate disturbances at an acceptable periodicity.

Indicators of quality:

- Dense horizontal and vertical vegetation structure
- No indication of overgrazing
- Absence of active secondary succession towards forest ecosystems (absence of trees)
- Absence of grass encroachment
- Species richness of the stands
- Absence of invasive species
- Absence or low cover of ruderal species

Low levels of soil compactness, well developed Ah soil horizon and are good indicators of absence of over grazing that can result to degradation towards garrigues. On the other hand, the level of tree and grass encroachment and, generally, presence and abundance of a given set of typical species or functional traits (i.e. morphological, physiological and life history characteristics) can be used as proxy indicators of biodiversity levels and succession stage. Absence of invasive and/or ruderal taxa should be also considered as indication of good habitat quality.

Characteristic species:

Acacia albida, Arbutus unedo, Calluna vulgaris, Ceratonia siliqua, Cistus albidus, C. crispus, C. incanus, C. ladanifer, C. laurifolius, C. monspeliensis, C. populifolius, C. psilosepalus, C. salvifolius, Cupressus sempervirens, Erica arborea, E. cinerea, E. lusitanica, E. scoparia, J. oxycedrus, J. phoenicea, J. thurifera, Laurus nobilis, Lavandula stoechas subsp. luisieri, L. stoechas subsp. pedemontana, L. stoechas subsp. stoechas, Myrtus communis, Olea europaea subsp. cerasiformis, O. europaea var. sylvestris, Phillyrea angustifolia, P. latifolia, Pistacia lentiscus, Quercus coccifera, Q. faginea, Q. ilex, Q. pyrenaica, Q. rotundifolia, Q. suber, Rhamnus alaternus, Tetraclinis articulata, Viburnum tinus, Zelkova abelicea, Ziziphus lotus and Z. spina-christi.

Classification

This habitat may be equivalent to, or broader than, or narrower than the habitats or ecosystems in the following typologies.

EUNIS:

F5.1 Arborescent matorral

F5.2 Maquis

EuroVegChecklist:

Acero sempervirentis-Cupression sempervirentis Barbero et Quézel ex Quézel et al. 1993

Arbuto andrachnae-Quercion cocciferae Barbero et Quézel 1979

Arbuto unedonis-Laurion nobilis Rivas-Mart., Fernández-González et Loidi 1999

Asparago albi-Rhamnion oleoidis Rivas Goday ex Rivas-Mart. 1975

Ceratonio-Pistacion lentisci Zohary ex Zohary et Orshan 1959

Ericion arboreae (Rivas-Mart. ex Rivas-Mart. et al. 1986) Rivas-Mart. 1987

Erico-Quercion ilicis S. Brullo et al. 1977

Juniperion turbinatae Rivas-Mart. 1975 corr. 1987

Oleo-Ceratonion siliquae Br.-Bl. ex Guinochet et Drouineau 1944

Periplocion angustifoliae Rivas-Mart. 1975

Pistacio terebinthi-Rhamnion alaterni Barbero et Quézel ex Quézel et al. 1992

Quercion alnifoliae Barbero & Quézel 1979

Quercion broteroi Br.-Bl. et al. 1956 corr. Rivas-Mart. 1972

Quercion calliprini Zohary ex Quézel et al. 1992

Quercion ilicis Br.-Bl. ex Molinier 1934

Oleo sylvestris-Quercion rotundifoliae Barbero, Quézel et Rivas-Mart. in Rivas-Mart. et al. 1986 nom. invers. propos.

Rhamno lycioidis-Quercion cocciferae Rivas Goday ex Rivas-Mart. 1975

Annex I:

5210 Arborescent matorral with Juniperus spp.

5230 Arborescent matorral with Laurus nobilis

5310 Laurus nobilis thickets

5330 Thermo-Mediterranean and pre-desert scrub

9390 *Scrub & low forest vegetation with Quercus alnifolia

Emerald:

F5.13 Juniper matorral

F5.18 Laurus nobilis matorral

F5.516 Laurus thickets

MAES:

Heathland and shrub

IUCN:

3.8 Mediterranean-type Shrubby Vegetation

Other relationships:

5340 a Greek habitat type which includes maquis, garrigues and similar vegetation other than phrygana and pseudomaquis

Does the habitat type present an outstanding example of typical characteristics of one or more biogeographic regions?

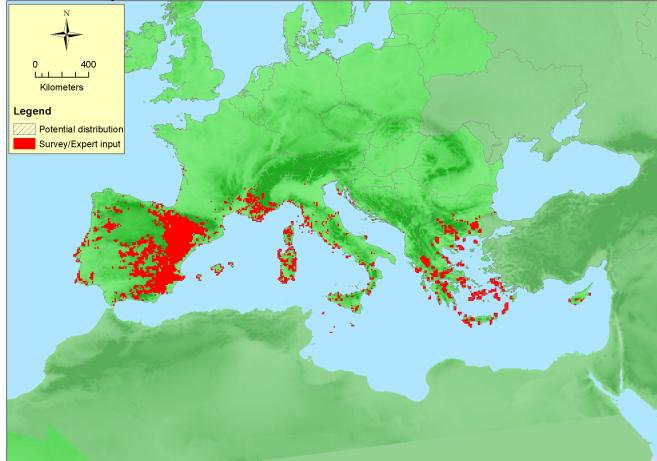
Yes

<u>Regions</u> Mediterranean

<u>Justification</u>

The evergreen sclerophyllous or lauriphyllous scrubs included in this habitat represent the typical and most widespread vegetation type of the Mediterranean basin; different subtypes of this habitat either with a more or less closed canopy structure (maquis) or low, sparse, garrigue-like silicicolous maquis of western Mediterranean, or low arborescent cover and with a usually thick, high evergreen shrub stratum, occur exclusively in the Mediterranean zone.

Geographic occurrence and trends


EU 28	Present or Presence Uncertain	Current area of habitat	Recent trend in quantity (last 50 yrs)	Recent trend in quality (last 50 yrs)	
Bulgaria	Present	184 Km ²	Increasing	Stable	
Croatia	Present	1208 Km ²	Increasing	Stable	
Cyprus	Present	56 Km ²	Stable	Increasing	
France	Corsica: Present France mainland: Present	218 Km ²	Stable	Stable	
Greece	Crete: Present East Aegean: Present Greece (mainland and other islands): Present	643 Km ²	Stable	Increasing	
Italy	Italy mainland: Present Sardinia: Present Sicily: Present	2205 Km ²	Stable	Unknown	
Malta	Present	Unknown Km ²	Unknown	Unknown	
Portugal	Portugal mainland: Present	19 Km ²	Decreasing	Unknown	
Spain	Balearic Islands: Present Spain mainland: Present	4990 Km ²	Stable	Stable	

EU 28 +	Present or Presence Uncertain	Current area of habitat	Recent trend in quantity (last 50 yrs)	Recent trend in quality (last 50 yrs)
Albania	Present Unknown Km ² U		Unknown	Unknown
Bosnia and Herzegovina	Present	20 Km ²	20 Km ² Decreasing	
Former Yugoslavian Republic of Macedonia (FYROM)	Present	Unknown Km ²	Unknown	Unknown
Montenegro	Present	Unknown Km ²	Unknown	Unknown
Serbia	Present	Unknown Km ²	Unknown	Unknown

Extent of Occurrence, Area of Occupancy and habitat area

	Extent of Occurrence (EOO)	Area of Occupancy (AOO)	Current estimated Total Area	Comment
EU 28	3934300 Km ²	3553	9523 Km ²	Based on the existing data provided from EU Member States. This number is partially representing the current actual total area.
EU 28+	3934300 Km ²	3575	>9523 Km ²	No quantitative data exist for the EU 28+ countries. We have only the current estimated area in Bosnia & Herzegovina

Distribution map

The map is rather complete for EU28, but has data gaps outside the European Union, like in the coastal regions of the Balkan countries. Data sources: Art17, EVA.

How much of the current distribution of the habitat type lies within the EU 28?

About 90% of its total Mediterranean distribution area lies within the EU 28.

Trends in quantity

Out of the nine countries that have provided territorial data, 5 countries (Spain, France, Italy, Greece, Cyprus) report a stable quantity, 2 countries (Bosnia/Herzegovina and Portugal) report a slight decrease, and 2 countries (Bulgaria, Croatia) report a slight increase to the extent of the habitat.

Average current trend in quantity (extent)

EU 28: Stable

EU 28+: Unknown

• Does the habitat type have a small natural range following regression?

No

Justification

The habitat occurs most often in extensive stands and the various vegetation types of the maquis and the arborescent matorral are typical and the most widespread vegetation occurring in the Mediterranean basin.

• Does the habitat have a small natural range by reason of its intrinsically restricted area?

No

Justification

The habitat is distributed across the entire Mediterranean biogeographical zone (including not only EU 28 and EU 28+ countries) but also in Turkey, Northern Africa, etc.

Trends in quality

Of the 9 countries for which territorial data are available, only few quantitative data have been provided on trends in quality. The recent trend in quality is given mostly as experts opinion, either as stable (5 of the 9 countries) or increasing (2 of the 9 countries) to decreasing (1 of the 9 countries) and unknown (1 of the 9 countries). The European trend has been calculated although with many data gaps. Overall its is assessed that there is a stable to positive trend (increasing) with slight severity of degradation in the past.

- Average current trend in quality
 - EU 28: Stable

EU 28+: Unknown

Pressures and threats

The main pressures, which might become threats in the future, affecting the quality (structural elements) of the habitat are related to quality indicators of the habitat: intensive grazing (overgrazing can result to degradation towards garrigues), forest clearance and fires, as well as the biocoenotic evolution and succession (absence of active secondary succession towards forest ecosystems is also a good quality indicator for the habitat). The intensity of the pressures vary throughout the Mediterranean distribution area of the habitat.

List of pressures and threats

Sylviculture, forestry

Forest and Plantation management & use Forestry clearance Removal of forest undergrowth Grazing in forests/ woodland

Transportation and service corridors

Roads, paths and railroads

Natural System modifications

Fire and fire suppression Burning down

Natural biotic and abiotic processes (without catastrophes)

Biocenotic evolution, succession

Conservation and management

In most cases no management measures are needed or (to be accurate) is possible to be implemented. However, especially when the habitat occurs within a protected area of the Natura 2000 network or under another designated protection status, it would be possible to monitor and control the grazing intensity, as well as the cutting of shrubs and low trees (for fire wood) and in some cases the forest clearance. The level of tree and grass penetration and, generally, the presence and abundance of a given set of typical species or functional traits (i.e. morphological, physiological and life history characteristics) that can be used as proxy indicators of biodiversity levels and succession stage could be set as conservation objectives and certain measures to restore or improve these tall scrub habitats could be designed and implemented.

List of conservation and management needs

Measures related to forests and wooded habitats

Restoring/Improving forest habitats Adapt forest management

Measures related to spatial planning

Manage landscape features

Conservation status

Only for the Mediterranean Biogeographical region where the herein defined habitat F 5.1 (related partly or fully with the Annex I of the Dir. 92/43/EC habitat types (5230, 6310) occurs.

5230 U1

6310 U2

When severely damaged, does the habitat retain the capacity to recover its typical character and functionality?

The habitat can restore naturally without any human intervention, even in short time periods.

Effort required

20 years	
Naturally	

Red List Assessment

Criterion A: Reduction in quantity

Criterion A	A1	A2a	A2b	A3
EU 28	-4.2 %	unknown %	unknown %	unknown %
EU 28+	-4.2 %	unknown %	unknown %	unknown %

The estimation of the decline in quantity is based on the territorial data provided by 7 of the 8 EU28 countries and shows a slight reduction in quantity the last 50 years. From the EU28+ countries, quantitative data were provided only by Bosnia & Herzegovina.

Criterion B: Restricted geographic distribution

Criterion B		B1				כם			
	EOO	а	b	С	AOO a b c		С	CO	
EU 28	>50000 Km ²	No	Unknown	Uknown	>50	No	Unknown	Uknown	Uknown
EU 28+	>50000 Km ²	Unknown	Unknown	Uknown	>50	Unknown	Unknown	Uknown	Uknown

The EOO, AOO and number of locations are all much higher than the thresholds under criterion B.

Criterion C and D: Reduction in abiotic and/or biotic quality

C/D1		C/	D2	C/	D3	
C/D	Extent affected	Relative severity	Extent affected	Relative severity	Extent affected	Relative severity
EU 28	8.9 %	25 %	unknown %	unknown %	unknown %	unknown %
EU 28+	8.9 %	25 %	unknown %	unknown %	unknown %	unknown %

	C	21	C	2	C	3
Criterion C	ExtentRelativeaffectedseverityunknown %unknown %		Extent affected	Relative severity	Extent Relative affected severity	
EU 28	unknown %	unknown %	unknown %	unknown % unknown %		unknown %
EU 28+	unknown %	unknown %	unknown % unknown %		unknown %	unknown %

	[01	[02	D3		
Criterion D	Extent affected	affected severity a		Relative severity	Extent Relative affected severity		
EU 28	unknown %	unknown%	unknown %	unknown % unknown%		unknown%	
EU 28+	unknown %	unknown%	unknown %	unknown%	unknown % unknown%		

Both biotic and abiotic quality of the habitat have not substantially reduced the last 50 years. Decline in quality has been summarized on the basis of the national experts assessments. From the calculations of the trend in quality, it is evident that the last 50 years only a slight decline in quality (extent of degradation equals 8.9% with severity 25%) has occurred.

Criterion E: Quantitative analysis to evaluate risk of habitat collapse

Criterion E	Probability of collapse
EU 28	unknown
EU 28+	unknown

There is no quantitative analysis available that estimates the probability of collapse of this habitat.

Overall assessment "Balance sheet" for EU 28 and EU 28+

	A1	A2a	A2b	A3	B1	B2	B3	C/D1	C/D2	C/D3	C1	C2	C3	D1	D2	D3	E
EU28	LC	DD	DD	DD	LC	LC	LC	LC	DD	DD	DD	DD	DD	DD	DD	DD	DD
EU28+	LC	DD	DD	DD	LC	LC	LC	LC	DD	DD	DD	DD	DD	DD	DD	DD	DD

Overall Category & Criteria			
EU 28		EU 28+	
Red List Category	Red List Criteria	Red List Category	Red List Criteria
Least Concern	-	Least Concern	-

Confidence in the assessment

High (mainly based on quantitative data sources and/or scientific literature)

Assessors

P. Dimopoulos

Contributors

Type description: F. Xystrakis

Territorial data: E. Agrillo, O. Argagnon, F. Attorre, S. Bagella, J.Capelo, L. Casella, P. Dimopoulos, D. Espírito-Santo, C. Giancola, D. Gigante, G. Giusso del Galdo, Ch. Gussev, J. Loidi, C. Marcenò, G. Pezzi, S. Sciandrello, Škvorc , V. Stupar, D. Viciani

Working Group Heathland & Scrub: M. Aronsson, F. Bioret, C. Bita-Nicolae, J. Capelo, A. Čarni, P. Dimopoulos, J. Janssen, J. Loidi

Reviewers J. Rodwell

Date of assessment 28/12/2015

Date of review 11/02/2016

References

Costa, José Carlos, Carlos Neto, Carlos Aguiar, Jorge Capelo, Maria Dalila Espírito Santo, João Honrado, Carlos Pinto-Gomes, Tiago Monteiro-Henriques, Miguel Sequeira and Mario Lousã. "Vascular Plant Communities in Portugal (Continental, the Azores and Madeira)." Global Geobotany 2, no. 1 (2012): 1-180.

Rivas-Martínez, Salvador, Thomas E. Díaz, Federico Fernández-González, Jesús Izco, Javier Loidi, Mario Lousã and Ángel Penas. "Vascular Plant Communities of Spain and Portugal." Itinera Geobotanica 15, (2002): 1-922.

Tsiourlis, Georgios, Pavlos Konstantinidis and Pantelis Xofis. "Syntaxonomy and Synecology of Quercus Coccifera Mediterranean Shrublands in Greece." Journal of Plant Biology 52, no. 5 (2009): 433-447.

http://www.prodromo-vegetazione-italia.org (access: 19-Sep-2014)