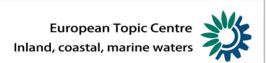

Water quantity data reporting and streamlining with Eurostat, indicators and water accounts

2013 Freshwater Eionet Workshop 19/20 September 2013, Copenhagen

George Karavokiros, ETC/ICM, NTUA

Streamlining Water Quantity dataflows

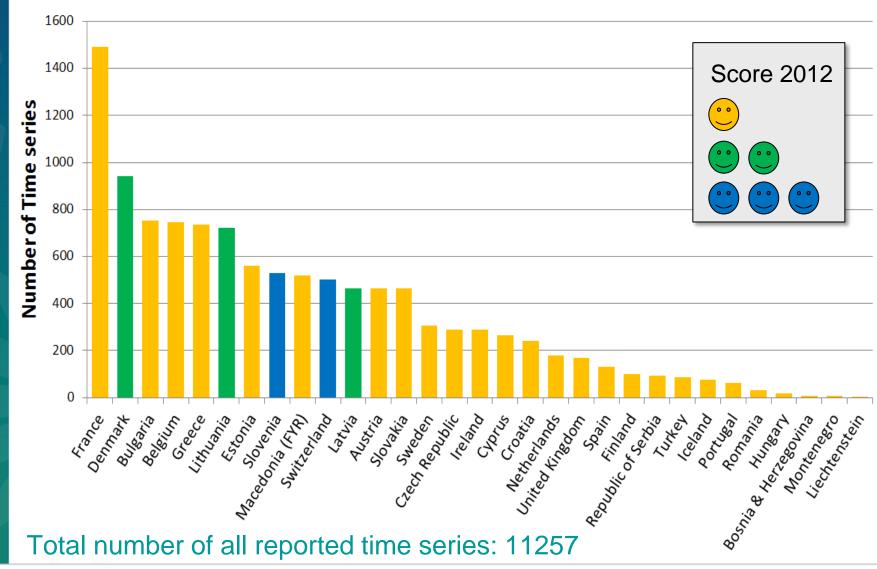

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen

Established water quantity dataflows

	OECD/EUROSTAT	WISE-SoE	WFD	
Data categories	water abstraction, water balance, water use	water abstraction, water balance, water use	water abstraction	
Spatial scale	Country (JQ), RBD, Sub- Unit, NUTS (REQ)	Country, RBD, Sub-Unit, NUTS	RBD, Sub-Unit	
Reference to geographical entity	Region	Region and Point (Station)	Region	
Time scale	Annual	Annual, Seasonal, Monthly, Daily	Annual, Seasonal	
Data collection period	Biennially	Annually	~6 yrs (i.e. following WFD implementation schedule)	
Number of quantifiable param.	131 (JQ)	186	SW: 11 GW: 8	
Character	Supported by national stat. offices and EUROSTAT (specific grants also applicable)	Voluntary, using national resources, supported by EEA – ETC/ICM	Mandatory, EU- Directive	
Responses 2012	35	29	27	
Reporting format	MS-Excel file	XML (produced by Reporting tool)	XML (produced from MS-Access)	

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen

WISE-SoE dataflow


Reporting year	2009	2010	2011	2012
Geographical point entities (stations)	3 687	4 380	5 246	8 625
Total time series	3 680	5 190	8 066	11 257
Time series on geographical points	1 343	2 347	3 770	6 027
Time series on geographical areas	2 337	2 843	4 296	5 230
Total number of time series records	147 438	290 634	1 027 551	1 862 476
Total number of participating countries	17	22	26	31

Reporting issues

- Some countries focus only on specific parameters
- Data delivered not always in the specified XML format
- Poor response to the validation questions

Number of reported time series per country under WISE-SoE

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen

Complementing and enhancing the water quantity data flow to support Water Assets Accounts

- A one-off data request to support the production of Water Balances
- Data collection period: June-November 2011
- Various sources (excel file, text file, official websites)
- Main goal: Create a layer of gauging stations and their respective long time series
 - Daily stream flow data complementing and enhancing the hydrographic reference system (ECRINS)
 - Preferable reference period: the past 15 years

Other goals

- Clarify the country policy as regards to the provision of disaggregated data
- Provide a formal agreement on using the data for enhancing the water quantity data flow
- Declare interest and specify expectations regarding the return of experience

Stream flow stations (Water Accounts + WISE SoE)

Countries: 28

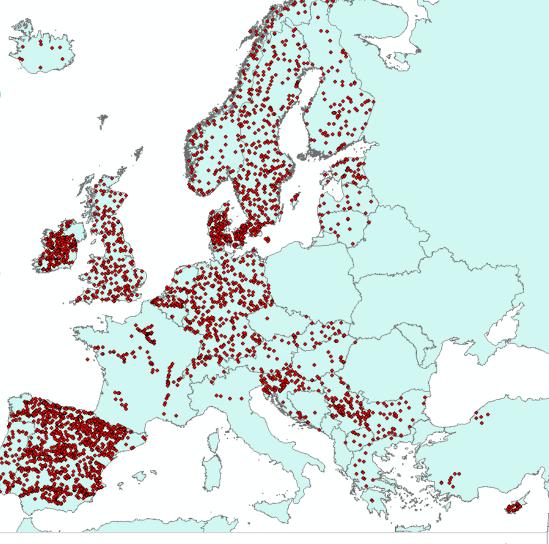
Number of stations:

3505 (2981 WA + 1013 SoE)

Number of daily time series:

2734

Number of Records:


37 507 096

Very diverse situation across Europe

 Extent and density of the measuring stations network

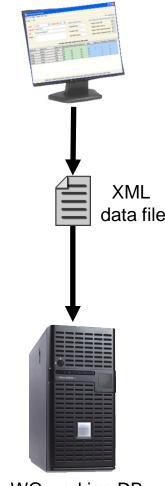
 Management and administration (e.g. level of centralization)

- Policy regarding publication/licensing
- · Data dissemination approach
- IT infrastructure/ architecture

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen

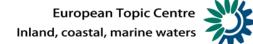
Data validation under WISE-SoE Water Quantity

Phase 1: Early stage error detection


Potential errors instantly detected when using the WQ Reporting Tool:

- Duplicate stations or invalid codes
- Invalid data types
- Missing mandatory parameters
- Violation of logical rules
- Detection of extreme values

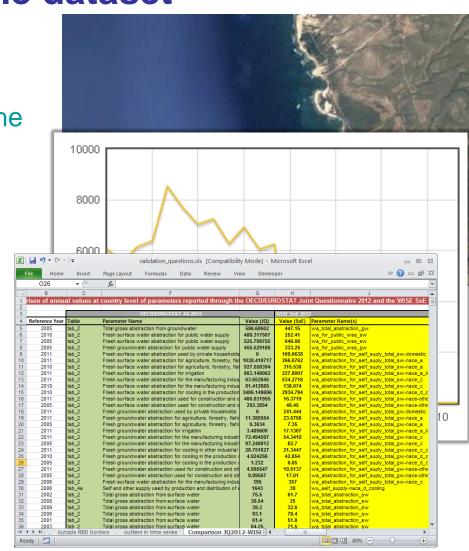
Phase 2: Database constraints


- Referential integrity (foreign key)
- Identification of entities through primary keys
- Correct data types
- Existence of mandatory data
- Uniqueness of data (e.g. IDs and codes)

WQ Reporting Tool

WQ working DB

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen



Phase 3: QA procedures performed on the whole dataset


Logical rule violations

 Displaced stations (outside the reported country's or RBD's borders)

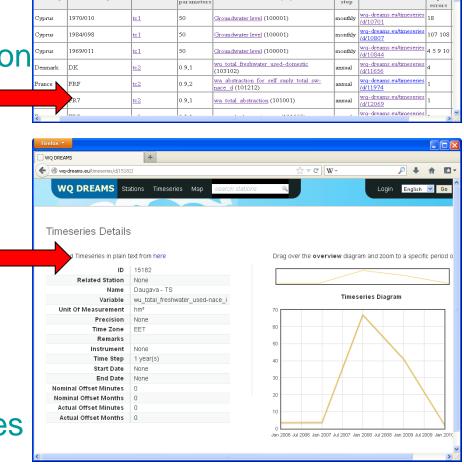
- Outliers in time series
 - Range checks
 - Temporal consistency
- Inconsistencies between OECD/EUROSTAT Joint Questionnaire 2012 and the WISE SoE water quantity dataflow

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen

Actions in case of suspicious or erroneous data

file:///I:/CHI/WO_DREAMS/QA/outliers/outliers.htm

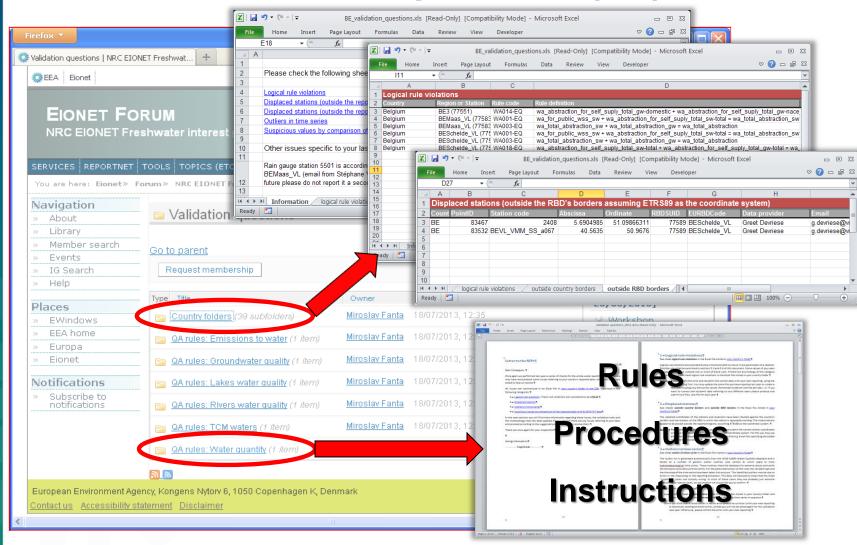
Rule violated


Contact data providers

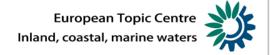
 Exclude obvious errors from the official publication


 Flag out records with suspicious data

 Links to URLs showing suspicious time series (wq-dreams.eu)


 Formulate validation questions to the MS pointing out suspicious and erroneous time series

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen



Validation questions (2/2)

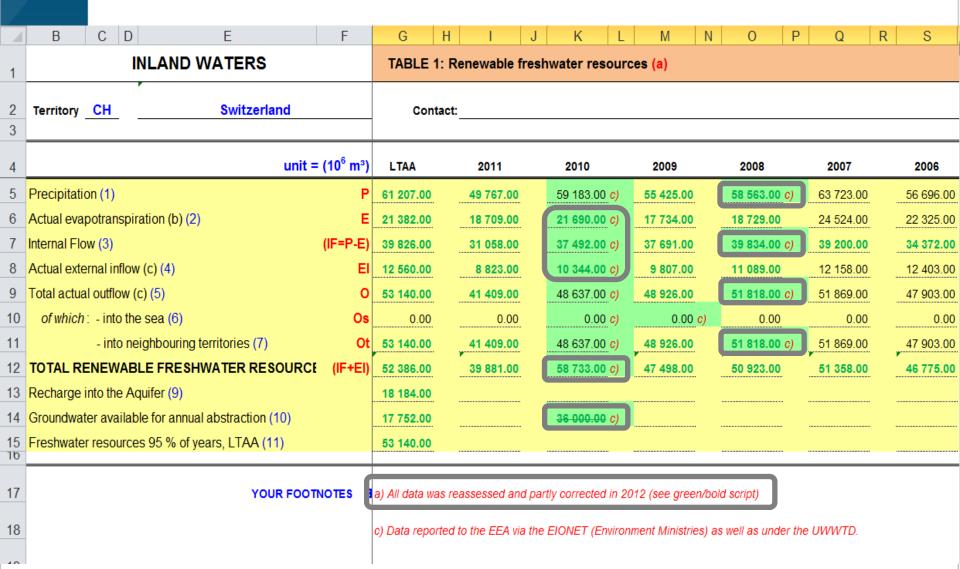
http://forum.eionet.europa.eu/nrc-eionet-freshwater/library/wise-soe-reporting-2013/validation-questions/

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen

Pre-filling OECD/Eurostat Joint Questionnaire 2012 with WISE-SoE Water Quantity data

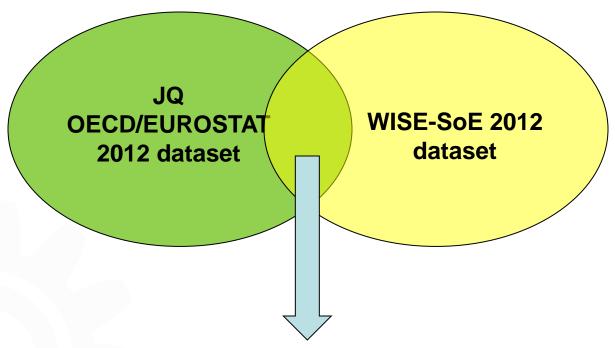
Milestones

- March 2011: Initial consultations between EEA-**EUROSTAT**
- September 2012: Delivery of WISE-SoE data (incl. 2011 data request)
- October 2012: Pre-filling the JQ2012 and the REQ2012 with WISE-SoE data
- End 2012: MS response to JQ2012 and REQ2012
- June 2013: Compilation/Validation of JQ2012 data
- July 2013: Formulation of validation questions to MS


14

Problems during pre-filling

- Identification of identical parameters in both datasets
 - 106 parameters in both datasets are identical (1:1) or identical to a combination of parameters (1:n)
 - Some parameters have similar but not identical definitions
- Aggregation of WISE-SoE parameter values in all available years:
 - Spatial aggregation from Sub-Unit to RBD (for REQ) and from RBD to Country (for JQ)
 - Temporal aggregation from monthly or seasonal to annual
 - Combination of WISE-SoE parameters to one JQ/REQ parameter
- Finally, 5242 WISE-SoE data records in total from 21 countries have been provided to EUROSTAT:
 - 1487 records at country level
 - 3755 records at RBD level


Example of Table 1 of the JQ 2012 pre-filled

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen Author: George Karavokiros

European Topic Centre Inland, coastal, marine waters

Cross-checking WISE-SoE and OECD/Eurostat dataflows

1445 records of annual water quantity parameters at country level with identical definitions in both dataflows

Difference of parameter values between the datasets SoE 2012 and JQ 2012

	identical	<1%	1%-10%	10%-50%	>50%	
AT	15	2				
ВА	1		1			validation_questions.xls [Co Formulas Data Revie
BG	1	4	7	9	23	F F
СН	130	1	4	1	1	of parameters reported th
CY	89	65	38	17	7	action from groundwater ater abstraction for public water ater abstraction for public water
CZ	8	7	2	6	12	ter abstraction for public water ster abstraction used by private ater abstraction for agriculture, f
DK	123	17	8	3	3	ater abstraction for agriculture, f ater abstraction for irrigation ater abstraction for the manufact ater abstraction for the manufact
EE	16	1	1	3	11	ater abstraction for cooling in the rater abstraction used for constru rater abstraction used for constru
FI	23					ter abstraction used by private h ter abstraction for agriculture, for ter abstraction for agriculture, for gririgation
FR	4	6	4			the manufacture to about the manufacture to the manufacture for cooling in other
HU	2				8	ter abstraction for cooling in the ter abstraction for cooling in the ter abstraction used for construi- ter abstraction used for construi-
LT	98	24	20	28	77	ater abstraction for the manufac upply used by production and dist action from surface water
LV	129	10	10	2	12	raction from surface water raction from surface water raction from surface water raction from surface water
MK	3				4	action from surface water s in time series Comparis
NL	41	35	24	33	18	
PT	4				1	
RO	12	1	2	6	2	l
RS			_	2	1	l
SI	58	20	17	14	11	
SK	15	7	4	6	10	
Sum	772	200	142	40	201	
%	53.4	13.8	9.8	9.0	13.9	22

22,9%

488,317507

863,148062

3486,14969

292,3854

9.3634

3.405609 97,240812

28.751627

4.995547

30.54 39.3

61.4

227,8007

48 45

e series Comparison JQ2012-WISE 4

Event: 2013 Freshwater Eionet Workshop, 19/20 September 2013, Copenhagen

Author: George Karavokiros

∨ 🕜 🕳 🖾

wa abstraction for self suply total sw-nace of

wa_abstraction_for_self_suply_total_sw-nace-oth

wa_abstraction_for_self_suply_total_gw-nace_a

wa_abstraction_for_self_suply_total_gw-nace_d_ wa_abstraction_for_self_suply_total_gw-nace-oth

wa_abstraction_for_self_suply_total_sw-nace_ wu_self_supply-nace_d_cooling

wa_total_abstraction_sw wa_total_abstraction_sw

■□ □ 80% --

Possible reasons for inconsistencies

- Same meaning of parameter definitions in both streamflows but differences in the wording may lead to confusion
- Different national agencies report the same parameters, possibly using different methodologies, measurements etc.
- Parameter definition not understood

 (e.g. systematic confusion between ETa and PET, inclusion/exclusion of cooling water and hydropower)
- Confusion in unit selection

Defining the needs of a regular dataflow for the production on Water Balances at the EU level

Policy need: Water Balances at the adequate spatiotemporal scale **Preconditions**:

(a)
A dataflow that can secure the data needs at the relevant resolution

R

(b)
Representative Indicators capturing key
messages
(i.e. on water exploitation, unmet
demand, water use efficiency, etc.)

Work in progress:

- Assessment of the complementarities of the existing dataflows, identification of the data gaps which need to be bridged
- Suggestion of a targeted dataflow supporting the production of water balances (e.g. based on a simplification of the SoE#3)
- Adding/complementing with indicators to support the assessment and visualisation

Issues and questions to NRCs

Issues to be discussed

- Review of the data validation procedure and the role of ETC/ICM and MS
- Reasons for inconsistencies in datasets and how to increase data quality

Questions to NRCs

 Why are there differences between the SoE and JQ water quantity data?

