

Reporting of emissions to water - 2nd RBMPs

CAS_7439-97-6 - Mercury and its compounds

Inventory methodology

- Notes:
- 1) The dashboard contains information processed from the data provided during the 2nd River Basin Management Plans reporting.
- 2) Some of the reported data was excluded due to inconsistencies, which possible resulted from the bypass of the automated data quality control in incomplete data deliveries ("Annex 0" envelopes).
- 3) The data integration process used information reported about Priority Substances causing failure to achieve Good Chemical status in order to access the relevance at RDB scale.
- 4) The information about the emissions reported under the WISE SoE Emissions dataflow (WISE-1) was not consolidated with the 2nd RBMP data.

- Much variability between MS approaches
- Difficulties in electronic reporting of emissions (improved for 3rd RBMPs)
 - → Significant lack of confidence in comparability of the data

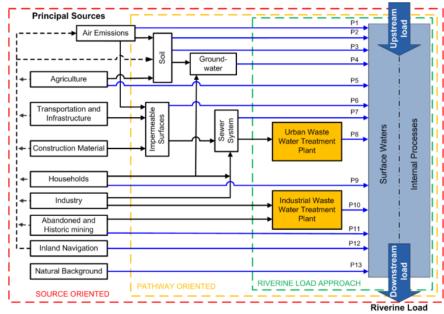
Activity to improve reporting on emissions to water

Aim to support better and more comparable reporting in future.

WFD WG Chemicals work programme 2019-21 – subgroup to improve emissions reporting, led by EEA/ETC-ICM

Project made significant progress, but "not quite finished" with 13 pathways identified in technical guidance on Priority Substances Emission Inventory

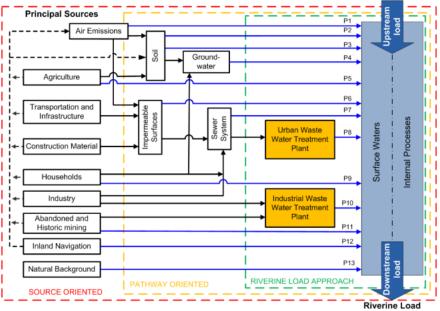
Work aims to support countries where there is no better information available.


Factsheets complete. Send to WG Chemicals for review and approval	Factsheets nearly ready, we can finalise for WG Chemicals by end of September	Factsheets need significant effort before finalisation. Stop development now. Submit as "part done" to WG Chemicals.
1 – atmospheric deposition 8 – UWWT 9 – untreated household discharges 10 – industrial waste water 12 – inland navigation	6 – runoff from sealed areas 7 – SWO, CSO 11 – mining 13 - natural background	2-5 – soils: metals + pesticides

Sub-group conclusions 15 Sept 2021

Approach taken

Figure 2. 1 Relationship between the different surface water compartments and pathways (P1-P13).


P1 Atmospheric Deposition directly to surface water	P8 Urban Waste Water treated		
P2 Erosion	P9 Individual - treated and untreated- household discharges		
P3 Surface runoff from unsealed areas	P10 Industrial Waste Water treated		
P4 Interflow, Tile Drainage and Groundwater	P11 Direct Discharges from Mining		
P5 Direct discharges and drifting	P12 Direct Discharges from Navigation		
P6 Surface Runoff from sealed Areas	P13 Natural Background		
7 Storm Water Outlets and Combined Sewer overflows + unconnected sewers			

Source: EC (2012)

Approach taken

- Intention to assist countries with their calculations, in cases where they lack better information
- No requirement to use the approach supplements WFD CIS Technical Guidance Document
- Emission factors provided for a specific activity rate (and pathway) and pollutant, where possible.
- (Activity rate eg no. of inhabitants; population equivalent; annual km driven by cars.)

Figure 2. 1 Relationship between the different surface water compartments and pathways (P1-P13).

	Nivernie Educ		
P1 Atmospheric Deposition directly to surface water	P8 Urban Waste Water treated		
P2 Erosion	P9 Individual - treated and untreated- household discharges		
P3 Surface runoff from unsealed areas	P10 Industrial Waste Water treated		
P4 Interflow, Tile Drainage and Groundwater	P11 Direct Discharges from Mining		
P5 Direct discharges and drifting	P12 Direct Discharges from Navigation		
P6 Surface Runoff from sealed Areas	P13 Natural Background		
P7 Storm Water Outlets and Combined Sewer overflows + unconnected sewers			

Source: EC (2012)

Example of calculation using factors

Emission (E) = Activity Rate (AR) x Emission Factor (EF)

Where:

Emission = emission of lead by UWWTPs in RBD (kg/year) Activity Rate = annual effluent flow for all UWWTPs in RBD (m^3 /year) Emission Factor = concentration of lead in effluent (μ g/l)

```
EF for lead = 0.73 \, \mu g/ (Table 7.4)
AR of 10^6 \, m^3/year
Calculate the emission of lead to surface water: 0.73 \, x \, 10-9 (\mu g \, to \, kg) x 10^6 \, x \, 10^3 (m^3 \, to \, l) = 0.73 \, kg/year.
```

ETC ICM **Technical** report

Look up tables

Table 6. 6 Metal load (Cadmium, Nickel, Lead) entering septic tanks on a per capita basis on the country level (Comber 2021).

Country*	Cadmium co (mg/capita)	oncentration /day)			Lead concentration (mg/capita/day)	
	Based on calculate d loads	Based on measured loads	Based on calculated loads	Based on measured loads	Based on measured loads	
Albania	0.172	0.162	1.02	1.37	3.26	
Austria	0.092	0.072	0.63	0.61	1.44	
Belgium	0.078	0.055	0.53	0.47	1.11	
Bosnia and Herzegovina	0.073	0.050	0.49	0.42	1.00	
Bulgaria	0.081	0.060	0.56	0.51	1.20	
Croatia	0.091	0.071	0.61	0.60	1.42	
Cyprus	0.177	0.171	1.00	1.45	3.44	
Czechia	0.074	0.051	0.56	0.43	1.02	
Denmark	0.097	0.079	0.63	0.67	1.26	
Estonia	0.076	0.054	0.51	0.46	1.09	
Finland	0.127	0.069	0.76	0.59	1.39	
France	0.108	0.086	0.67	0.73	1.73	
Germany	0.083	0.073	0.58	0.62	1.47	

ETC ICM **Technical** report

Look up tables

Table 6. 6 Metal load (Cadmium, Nickel, Lead) entering septic tanks on a per capita basis on the country level (Comber 2021).

Country*	Cadmium co (mg/capita)	oncentration /day)	Nickel concen (mg/capita/da	Lead concentration (mg/capita/day)	
	Based on calculate d loads	Based on measured loads	Based on calculated loads	Based on measured loads	Based on measured loads
Albania	0.172	0.162	1.02	1.37	3.26
Austria	0.092	0.072	0.63	0.61	1.44
Belgium	0.078	0.055	0.53	0.47	1.11
Bosnia and Herzegovina	0.073	0.050	0.49	0.42	1.00
Bulgaria	0.081	0.060	0.56	0.51	1.20
Croatia	0.091	0.071	0.61	0.60	1.42
Cyprus	0.177	0.171	1.00	1.45	3.44
Czechia	0.074	0.051	0.56	0.43	1.02
Denmark	0.097	0.079	0.63	0.67	1.26
Estonia	0.076	0.054	0.51	0.46	1.09
Finland	0.127	0.069	0.76	0.59	1.39
France	0.108	0.086	0.67	0.73	1.73
Germany	0.083	0.073	0.58	0.62	1.47

Contents + detailed annexes

Executive summary	3
Introduction	4
Simplified method for the quantification of	6
emissions to surface water	
Atmospheric pollution directly to surface water	11
Erosion, surface runoff from unsealed area,	16
Interflow, Direct discharges and drifting	
Surface runoff from sealed areas	32
Stormwater outlets, CSOs, unconnected sewers	37
Urban waste water treated	53
Individual household discharges	64
Industrial waste water treated	73
Direct discharges from mining	76
Inland navigation	78
Natural background	82
Annexes 101-	223

ETC ICM Technical report

Look up tables

Table 6. 6 Metal load (Cadmium, Nickel, Lead) entering septic tanks on a per capita basis on the country level (Comber 2021).

Country*	Cadmium c	oncentration	Nic (m	kel concen	tration	Lead	
	(iiig/ capita/ aay)		,		DIID	LICATI	ON LA
	Based on calculate d loads	Based on measured loads	Ba: cal loa				'EAR –
Albania	0.172	0.162				11113 1	LAN -
Austria	0.092	0.072					
Belgium	0.078	0.055			LINK	to be	circula
Bosnia and Herzegovina	0.073	0.050					
Bulgaria	0.081	0.060		0.56	0.51	1.20	
Croatia	0.091	0.071		0.61	0.60	1.42	
Cyprus	0.177	0.171		1.00	1.45	3.44	
Czechia	0.074	0.051		0.56	0.43	1.02	
Denmark	0.097	0.079		0.63	0.67	1.26	
Estonia	0.076	0.054		0.51	0.46	1.09	
Finland	0.127	0.069		0.76	0.59	1.39	
France	0.108	0.086		0.67	0.73	1.73	
Germany	0.083	0.073		0.58	0.62	1.47	

Contents + detailed annexes

Executive summary						
Introduction						
Simplified n	nethod for the quantification of	6				
amissians to	၇ surface water					
ATER	c pollution directly to surface water	11				
	face runoff from unsealed area,	16				
-	rect discharges and drifting					
4.0	off from sealed areas	32				
ated	outlets, CSOs, unconnected sewers					
Urpan wast	e water treated	53				
Individual h	ousehold discharges	64				
Industrial w	aste water treated	73				
Direct disch	arges from mining	76				
Inland navigation						
Natural background						
Annexes 101-2						

European Environment Agency

Thank you

WG Chemicals subgroup on emissions to water:

Anette Christensen (DK), Birgitte Cordua (DK), Cara O'Loughlin (IE), Cornelia Rudolph (EC), Damian Bojanowski (PL), Emanuele Ferretti (IT), Manfred Clara (AT), Oliver Gabriel (AT), Pierre Boucard (FR), Piva Francesca (IT), Silvie Semeradova (CZ), Ana Stjärne (SE), Donata Dubber (IE), Ian Fox (IE), Jurgen Meirlaen (BE/Flanders), Maj-Britt Bjergager (DK), Rasmus Dyrmose Nørregaard (DK), Sofie Van Volsem (BE/Flanders), Volker Mohaupt (DE) Francesca Archi (ISPRA),

Chris Cooper (Eurometaux), Frank van Assche (Eurometaux), Lara van de Merckt (Eurometaux), Marie Jo Booth (Euroelectric), Sara Johansson (EEB), Sean Comber (Plymouth University), Thomas Kullick (CEFIC), Chris Schyll (Eurometaux), Kevin Farley (Eurometaux), Klaas Jilderda (ECPA), Nathalie Kinga Kowalski (Eurometaux), : Concawe.

Eionet reviewers

ETC-ICM Project team: Joost van den Roovaart, Nanette van Duijnhoven, Antje Ullrich, Bouke Ottow, Volker Mohaupt, Hana Prchalova, Julie Bleser

EEA team: Marek Staron, Fernanda Nery, Francesco Mundo, Jørgen Olsen, Caroline Whalley

WISE SoE datacall opens today, 10th October!

